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The present paper is concerned with one of the simplest problems of mixing, namely, 

the mixing of a viscous incompressible fluid. The complete boundary value problem is 
analyzed using the group-theoretic approach and it is shown. that various problems of 
viscous .mixing (discharge of fluid, flow within a wake etc. ) are obtained as particular 

cases corresponding to some definite values of the constant m appearing in the solution 

of the boundary value problem, where the solution is invariant under the admissible 
group of transformations 

Problems of mixing of viscous fluids are widely studied (see e. g. [l - 41). The fol- 

lowing characteristic feature of the physical statement of the problem emerges from 

these studies: it is the assumption of existence of a “narrow” zone of mixing extending 
along the stream, within which some of the flow parameters (longitudinal velocity, tem- 
perature, concentration, etc. ) vary sharply in the transverse direction, while other (e. g. 

pressure) change significantly only in the direction of flow. Such zones of mixing appear 
in the presence of a sharp change in the values of one or several flow parameters and 

represent the region of diffusion of this change. This region increases according to some 
law in the direction of the longitudinal velocity and the flow in such narrow zones can 
be described by the boundary layer equations. 

1. Statement of the problem, We shall consider the upper half of the plane 

flow with mixing of a viscous incompressible fluid, symmetric with respect to the hori- 
zontal axis of the flow and described by the following boundary layer equations 

(1.1) 

where u (sly) and ‘V (5, y) are,respectively, the horizontal and vertical velocity, v is 
the kinematic’ viscosity coefficient, while z and y are the Cartesian coordinates. The 
velocities u andi u should satisfy the following boundary conditions 

lim [u (z, y)/&(y)] = 1 when x= const, Y-V 00 (1.2) 

lim [U(5, Y)/uo(~)] = 1 when z-0, y= const (1.3) 

(We/)y=O = 0, (dud = 0 (1.4) 
where u,, (g) denotes the horizontal velocity profile in the cross section 5 = 00 Without 
making any definite assumptions about u. (y), we shall require the solution of the prob- 

lem (1.1) - (1.4) to be self-similar. 
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2. Group-theoretic rnrlyais of the equation8 and reduction of 
the boundary value problem to the CAUChy*J problem for the 
ordinary equation, First we shall find the self-similar solution of (1.1) satisfying 
(1.4). After that we shall show, which functions t&O (y) correspond to one or the other 
self-similar solution, exhausting all the possible functions ua (y) which can appear in the 
statement of the problem of viscous mixing in the case when the ax&y = O’is the sym- 

metry axis and the fluid is incompressible. 
We know [S] that the self-similar solution is invariant with respect to any similarity 

group transformations (in this case it will be a one-parameter group) admitted by the 
system (1.1). Paper [S] shows that the system (1.1) admits two one-parameter similarity 

groups whose arbitrary superposition has the form 

ut = (?-=a u, vt = c-&J, x1 = c=x, y, = cey (2.1) 
where C% and fi are arbitrary constants (--00 ( a, p ( oo). Any self-similar solution 
of (1.1) is invariant with respect to a group of the form (2.1) with some fixed values of 
a and B, and has the form . .- 

u -qJ’(h)x~ ( 

-- 
v=ll,(h)x n-h ( 

-- 
h= yx A (m+2) (2.2) 

where the prime denotes a derivative with respect to the self-similar variable h. Inte- 

grating the equations of continuity we obtain the following relation between $ (A) and 

Solution corresponding to the case when a = 0 in (2.1) is not included in the relation 
(2.2). It was obtained in [6] and we shall not consider it here since it is uninteresting. 

Inserting (2.2) into (1.1) we obtain the following ordinary differential equation in 

cp (A) - m-4-i v(p”’ + - m+2 vf-- m+m2’pt’=0 (v>O, m>-22) (2.4) 

with the boundary conditions 

cp (0) = 0, 9” (0) = 0 (2.5) 
obtained from (1.4) and (2.2), and with 

cp’(O) = r (-f > 6) 
taken as the third condition. 

(2.6) 

Each solution of the problem (2.4) - (2,6) with some fixed values of v, y and m 

generates, by (2.2). a solution u (x, y), v(x, y) of the system (1.1) satisfying the condi- 
tions (1.4). We can easily see &n (1.2). (1.3) and (2.2) that the character of the flow 
in the physical plane is governed by the asymptotic behavior of the solution cp (h) of the 
problem (2.4) - (2.6) as h --t 00. Indeed, when we know the asymptotic behavior of 
the solution cp (h) as h + oo , we can always find such a function uo (y) for which the 
relations (1.2) and (1.3) hold, i.e. we can define the problem of mixing completely. 

It can easily be shown that the parameters v. and y appearing in the formulation of 

the problem (2.4) - (2.6) will not be essential. 
Indeed, introducing the function ‘pl (A) = v-1 cp (A,) we can eliminate v from (2.4), 

and subsequent substitution 

(2.7) 

will reduce the problem for q&) to 
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Thus the solution of (2.4) - (2.6) and its asymptotic behavior can easily be obtained 
from the solution of the asymptotic behavior of the solution of (2.8). using the relations 

cp (a) = (V#‘:cp* (Q, I = + “‘At 
( > 

(2.9) 

When considering the problems of mixing, we usually introduce two integral charac- 
teristics : the impulse 1s and the flux 1, which can be written in the plane case and with 
the symmetry taken into account, as 

sm+t 

la = 2{u’dy = 2Fv.‘q*jlcJ,- (5,)dA.l (2.10) 
0 0 

m+l 

I f = 2 5 udy = 23 (v$ ‘pp (A,) (2.11) 
0 

Relations (2.10) and (2.11) show that both, I,, and 1, , remain, for some value of ?rs, 
constant along the z-axis. 

3. Annlytin of rome real flows. From (2.2) we see that the case m> 0 
corresponds to the problems dealing with mixing of two streams (or the flow in the wake 
behind a body) and that the velocity u (2, Y) along the axis of symmetry of flow increa- 

ses, while the case 0 > m > - 2 corresponds to the problems of mixing during the efflux 
of fluid when the velocity along the axis of symmetry decreases. 

The solution of (2.8) lends itself to the analytic treatment at four values of m, namely 
m = 0, m = - 0.5, m = - 1, m = 1. Let us consider the case m = - 0.5. 

a) The case m = - 0.5 has been studied exhaustively (see e. g. [7]). It corre- 

sponds to the case of a submerged stream. The problem (2.8) becomes, in this case. 

cpl” + ‘/a pcpr’ + ‘/@s’s = 0, CpI (0) = qJ¶” (0) = 0, cpl’ (0) = 1 (3.i) 

which can be easily integrated. Arbitrary constants are determined from the initial con- 

ditions, and the resulting solution has the form 

cpr(kr)= flth & (3.2) 

Solution cp~ &) and its derivative R’ (u behave as follows : 

e(A1)+vg, cpr’(&)=2 i+ch [ (*Ir,]“+O when h1+00 (3.3) 

From (2.2), (2.9) and (3.3) we find, that 

{ 

6 
u (5, Y) = ~-‘%“pz (LX) + 

when x = const, y + 00 
0 when z + 0, y = const (3.4) 
00 when ~40, y=o 

and in accordance with (1.2) and (1.3) we obtain 

~0 (Y) = 0 when,y # 0, U0 (Y) = M when Y = 0 (3.5) 

It can easily be confirmed that the condition of the conservation of impulse along the 
z -axis characteristic for the submerged stream holds also in this case 
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co 

IO = Pv’J.y’f* 
s 

‘p212 (I.,) dhI = 2v’~~‘~zio = const (3.6) 

From (3.6) we see that if To is’given and the integral i0 is bounded, then the constant 
y can easily be obtained since f,, can be found from the known solution ‘p2 &I), while 

Y is a known material parameter of the fluid. Thus in the present case y is completely 
defined by the impulse imparted to the fluid particles at the point z = 0, y = 0 during 
the unit time. 

b) Let us consider the case m = 1. The problem (2.8) is now equivalent to 

‘Parv + 21s (p2(p2)” = 0, (pz (0) = cp,"(O) = 0, cpz' (0) = 1, (pi" (0) = l/2 (3.7), 

Although (3.7) cannot be solved by analytical methods, numerical integration can 
always be employed. 

We can, however, use the method given by Weyll in [8] to obtain the asymptotic beha- 
vior of the solution (p2 (AI) , and consequently, to find the form of ui (I/). 

From (3.7) we have A, 

g(hl)=~(g)=exp(--.~)exp[-_~S(11-E)ag(E)dS], s(hl)=3~“(hl) (3.8) 

This integral equation can be solved b; the method of successive approximations 
according to the scheme 

go (h,) = 1, g1 @I) = 0 (go), ***t gi+1 (hl) = 0 (gi),... 

We shall prove that the sequence fgi) converges and find lim gi (A,) as i + OO. 

Obviously, if q (U > h (%I (0 d % < -I- 00)~ then @ (q) gU, (h) (0 < % < +4 and 

go (A,) > g1 @A go A) > g2 R) 

From this it follows that 

g0 >/ &?2 > g, > ***t gl< g3 < &?6 < ***v g2i > ifZk+l (4 k = 0, 1, 2 I...) (3.9) 

Let 0 < h (%) < q (E) < I (0 d % < -I- =) and let us put 

Then 
sup Iq (5) - h (%)I = A (E >, 0) 

@ (h) - @ (q) = exp + 
x, 

exp (- &J (L-Wh(5) 4) x 

0 

x [l- exp(-- ~~(h,-F)“[u(t)-h(E)id5)1 < 

<exp - -y [i-exp(-O$)]<exp_hr'$<$- 
2 (3.10) 

Relations (3.9) and (3.10) infer that the sequence {gl) (L = 0, 1, 2,...) converges 
uniformly on [O, -i- 00) . Obviously 

T.” (A)1 = Vs lim frr (U (i-, 4, l/sgl(k) G cp" (h) d'/rlgr (h) (Al> 0) (3. ii) 

1 ( li12 11' 
-j-exp --y--m <e"@l)6 

> 

<$eXP(-y)exp [-~~(1~-U’eXp(-~-~)~] (3.12) 

From (3.12) it follows that at large AI p 
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gv (al) = 0 (e-v (3.13) 
Thus when 1, -_, 00, we have 

cpl” (L,) = a + 0 (&‘) (3.14) 

pa’ (Al) = & + b + 0 (CAf) (3.15) 

(pz (Ad = ‘lzd.? + bh + d + 0 (e -A,* ) (3.16) 

where (I, b and d are some positive constants whose values can be obtained by numeri- 
cal methods. 

From (2.2), (2.9) and (3.15) it follows, that for large Y and z > 0 

(3.17) 

which, together with the symmetry of the flow implies, that ~0 (k) will have the form 

uo (Y) = V’P P/” a 1 y 1 (3.18 

Hence the value of v can easily be found, provided that the derivative au,(y)/ 6yr 
i.e. the slope of the velocity profile at the cross section a~ = 0, is given. 

c) The case m = 0 is trivial. Indeed in this case (2.8) becomes 

cp,“’ + lIsq##*” = 0 (3.19) 

and q, = a11 is the solution satisfying the initial conditions. The velocities will be 

u (2. v) = m’ (&) = y = cons& and u (z, II) = 0, i. e. we shall have a plane parallel flow. 
d) When m = - 1, we can use the function ID = cp~’ (&) to write the problem 

(2.11) in the form 
Wm+UJ~=o, w(O)=‘f, l/(O)=0 (3.20) 

which on integration yields w 

(3.21) 

The latter formula shows that there exists Lo, for which w = 0. From (2.3) we find 
that 9 (Xp) = 0.Thu.s u and v become zero when h,= hp. i.e. the no-slip condition 

is fulfilled: The straight line & = Alo becomes, in the physical plane, 

k = (v/~)*F alo z (3.22) 

This means that the case m =-1 corresponds to viscous flow in a wedge between two 

planes. Quantity 0 can, in this case, be found from the angle between the two planes. 
The solution can also be obtained directly from the Hammel solution [9] by neglecting 

the terms which are small at high Reynold’s numbers. 

4. Numerical re8ulta. The problem (2.11) can be solved numerically for any 
values of the parameter m , Fig. 1 shows the behavior of cp,’ (5,) for various values of m. 

Considering the behavior of ‘PI’ &) for m = - 0.25 and m = - 0.375 we find, that 
at large I, the function can be written as 

w’ (a,) = c, (m) aim (4.1) 

Function ua (g) will then become 

~0 (I/) = G (m) I Y I” (4.2) 

When 0 > m > - 0.5 , the resulting flow in the physical plane appears to be diffuse. 
Asymptotic behavior of the velocity of this flow depends on the parameter m. The coef- 
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ficient Cl (m) decreases together with m , e. g. 

Fig. 1 

C, (- 0.25) = 0.81; C, (-0.375) = 0.391 

It appears that when m= LO.5 the coefficient ,C, 

becomes zero and the subsequent term of the asymp- 
totic representation becomes the principal one (see 

(3.2) ). 
When i> m > 0, we see from the example for 

m = 0.5 that the asymptotic behavior of ‘p%’ (A,)can 
also be described by (4.1). when A1 -D CO, while the 

function us (y) is given by (4.2). In the physical 
plane this case corresponds to the mixing of two 
streams with parabolic profiles. Fig. 1 shows that at 
the values of m within the range - 0.5 > m > - i 
the function vpl’ (A,) + - 00 for h, -+ hr. where ht. 

denotes some bounded limit value of hr. This makes 

the investigation of the asymptotic behavior of these 
functions as h, + 00, impossible. 

The cases with these values of m will correspond 

to flows in channels with curved walls 

y = (V / v)ip xp zllP+aj (4.3) 

Horizontal velocity at the walls will be equal to zero, while the vertical velocity will 

have some negative value corresponding to the influx through the walls. 

5. Mixing in the preaence of a pre88ure grrdfent. Let us consider a 
flow with mixing, in which the pressure is some function of 5. 

In this case the first equation of (1.1) will become 

(5.1) 

where p =p (Z) is the pressure referred to the density of the f‘luid. Self-similarity of 
the problem requires that the pressure is of the form 

P = I/, x&a” j @+a) (5.2) 

where XO is a new pressure parameter. The equation of motion will now be 

v”’ + m+2 
m+l (p(pI 

- * (cp’” + x0) = 0 
and on changing to the function ‘1’~ (hr) it will become 

(5.3) 

(5.4) 

with the previous boundary conditions retained (see (2.8)). 
Solution of this problem depends on the values of its two parameters, m and x,&z . 
Let us analyze the flows with the pressure gradient, for the specific values of IO discus- 

sed in Section 3. 
When m =k - 0.5, Eq. (5.4) can no longer be integrated to yield the exact solution, 

nor can its asymptotic behavior be obtained at’ 5, 4 M. However a numerical solution 
is feasible. Fig. 2 shows the result of computing ‘p,’ (A,,) for various values of the ratio 
LO 1 Y’ within the range 0 > x0 J ya > - 1. We see from this figure that (P%’ (h,) -. const 
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when h, * 00. When xo I p = 0, we obtain a well known exact solution. We also obtain 
the exact solution (pp (Al) = h, for all m , when XO / ya = - 1 . 

When m = I , Eq. (5.4) is easily reduced to (3 7). The only change occurs in the value 
of (pi” (0) , which will now be 9s” (0) = e / 3, where e = 1 + X0 / ys. Assuming that 

e > 0' and proceeding as in Section 3, we can obtain the asymptotic behavior of the solu- 
tion ‘h (&) in the presence of a pressure gradient. Integral equation analogous to (3.8) 
will now be 

g(W=exp(-_)exp [-+gb,C)(b--T)adE] (g(~~)=+~m(b~)) (5.5) 
n 

and the estimate (3.10) will become 

@ (h) - Q, (q) < +$ (5.6) 

Relations (3.14) - (3.18) will remain the same, but the constants u and b will under- 

go a significant change and will now depend on X0 I ra. 

Fig. 2 Fig. 3 

Fig. 3 shows how the profile ,_r~~’ (Al) varies with varying X0 / ya. 
This corresponds to the physical flow pattern already discussed for p = const . We see 

from Fig. 3 that for the values of XO / ya varying with the range 0 > X0 / ys > - 1, in- 

crease in the absolute value of the pressure leads to the straightening of the velocity pro- 

file. This follows from the fact that the pressure gradient is opposite to the velocity 
direction! 

The case m = 0 is identical with that of Section 3. 
When m = - 1, we introduce the function w = R’ to obtain the problem 

w” + ws + X0 / v’ - 0, w(0) = 1, 10’ (0) = 0 (5.7) 
whose solu_tion reduces to an elliptic integral 

f f [- 3 ($ + +)] “I) (5.8) 

As before, we can find such Ip, for which w = O.However, &O in this case will exist 
only for these values of xdv’ for which the inequality 

‘Is (i - E”) + (1 - &) x0 1 Y” 5 0 (5.9) 

holds for all & within the interval [O. 11. Hence XO / i” > - Vs. In the physical plane 
this case with 0 > X0 / ya > - l/s will correspond to the flow in a rectilinear divergent 
channel ; AlO will now depend on the ratio X0 / 7’ and both, the angle of inclination of 

the wall of the channel in the physical plane and the pressure p (zj,will have to be known 
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in order to determine the horizontal velocity profile. 

Integral (5.8) can easily be reduced to the 

standard form (see p 01). 

Fig. 4 

If 0 > t I v3 > - I/,, then (5.10) 

1, = (Vd-‘/’ F (2 arc ctg f(i - us) s-r, 

)T’/, + s/1 t-1) (t = v3 (1 + x0 / P) 

If -‘l/~>Xo/yr>- 1, then 

(5.11) 

4h r), F (CI, ~1, 

‘1s 

The latter requires the restriction 1 > w > E1 > Es, from which we find that 

- i > cp,’ (k.1) > - ‘1, + v-3 (I/*,+ X0 / 7) (5.12) 

The behavior of %’ &), in the two cases mentioned above is shown in Fig. 4. We find 
that when - 11, > x0 I r’ > - i , then cp,’ (&) is periodic. Minimum value of 9s (&) 
can be found from (5.13). 
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